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The Orr-Sommerfeld stability problem has been studied for velocity profiles 
appropriate to turbulent channel flow. The intent was to provide an evaluation 
of Malkus’s theory that the flow assumes a state of maximum dissipation, sub- 
ject to certain constraints, one of which is that the mean velocity profile is 
marginally stable. Dissipation rates and neutral stability curves were obtained 
for a representative two-parameter family of velocity profiles. Those in agree- 
ment with experimental profiles were found to be stable; the marginally stable 
profile of greatest dissipation was not in good agreement with experiments. An 
explanation for the apparent success of Malkus’s theory is offered. 

1. Introduction 
The steady, fully developed flow of an incompressible Newtonian fluid between 

two stationary infinite parallel planes is known as plane Poiseuille flow. Al- 
though the parabolic velocity profile of laminar Poiseuille flow is well known, the 
corresponding theory for turbulent flow is not yet satisfactory. The major differ- 
ence between the two cases is the existence of finite velocity fluctuations in 
turbulent flow. The interaction of these fluctuations yields a mean non-linear 
momentum transport (the ‘ Reynolds stress ’). This transport gives rise to an 
additional unknown in the mean momentum equations, and since methods for 
calculating this unknown are not available the problem is not closed. 

At the present time, the sole purely theoretical prediction of the mean velocity 
profile is that of Malkus (1956). Malkus completes the closure with a variational 
postulate; he assumes that the rate of energy dissipation is a maximum, and that 
the mean and fluctuating fields satisfy certain constraints. As he states them, two 
of these constraints are: ‘First, that the mean flow will be statistically stable if an 
Orr-Sommerfeld type equation is satisfied by fluctuations of the mean; second, 
that the smallest scale of motion that can be present in the spectrum of the 
momentum transport is the scale of the marginally stable fluctuations of the 
mean.’ Thus, he restricts the admissible class of velocity profles to those which 
have a marginally stable fluctuation and which are determined by a Reynolds 
stress composed of fluctuations no smaller than the indicated smallest scale. As 
will be discussed later, these restrictions imply that the mean velocity profile is 
marginally stable in the Orr-Sommerfeld sense. He then proposes to select from 
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this class that profile which renders the rate of energy dissipation a maxi- 
mum. The actual solution was obtained by an inversion of this maximization 
procedure, and numerous approximations were involved. Nevertheless, it  is 
striking that the mean velocity profile that he calculated in this purely theoretical 
manner closely resembles the profile measured by Laufer (1951). 

Malkus introduces the Orr-Sommerfeld problem into his theory by examining 
a perturbation of the mean velocity field, along the lines of classical stability 
theory (cf. Lin 1955). He assumes that the interaction of these small-amplitude 
velocity and pressure disturbances with the existing field of finite fluctuations 
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FIGURE 1. Conceptual scheme of Malkus’s theory. 

Neutral stability curve 

(the ‘background turbulence ’) is stabilizing. When terms which represent this 
interaction are omitted from the first-order perturbation equation, the Orr- 
Sommerfeld problem (with the turbulent mean velocity profile) results. It is this 
problem which is used to restrict the admissible family of mean velocity profiles. 

The family of admissible profiles is developed by expanding the Reynolds 
stresst in a finite series of periodic functions of y, chosen such that each term has 
more oscillations (in y) than the preceding term. The oscillation of the last mem- 
ber of the series sets the smallest scale of oscillation, or smallest wave length A,,,,. 
This presumably represents the smallest scale of motion present in the turbu- 
lence, and is extremely important in the Malkus theory. 

The Orr-Sommerfeld problem plays a key role in Malkus’s estimate of A,. 
These conditions upon the last term of the series may be visualized as in figure 1. 

f This simplification accurately reflects the conceptual idea. Actually a function d2 was 

Reynolds stress N (d2 - 1) dy. s,” expanded, where 

This allowed Malkus to guard against admitting profiles which would have inflexion points, 
which inherently lead to dynamic instability. 



Stability of turbulent channel flow 255 

The Reynolds stresses are determined from the series summation where the last 
term has a scale &. From the Reynolds stress a velocity profile shape is deter- 
mined; and from the Orr-Sommerfeld equation, the neutral stability curve for 
this profile shape is obtained. The eigenfunction corresponding to Rcrit, is then 
determined and the scale of its fluctuation is required to be compatible with &. 
Moreover, Rcrit. is required to emerge finally as the flow Reynolds number, so 
that the mean profile is marginally stable. These constraints determine the class 
of profiles which is admissible in the extremizing process. 

We propose to make the following test of these ideas. For some selected 
Reynolds number, we shall take the known mean velocity profile shape, and 
calculate the corresponding neutral stability curve, considering R to be a vari- 
able. The test will be successfuI if the critical Reynolds number determined from 
this curve matches the flow Reynolds number, as shown in figure 2. 

FIGURE 2. The idea of a marginally stable mean velocity profile. 

There has been considerable conjecture about the role of the Orr-Sommerfeld 
problem in Malkus’s theory. Townsend (1962) rephrases the constraint as 
‘marginal stability of the last member of the series’ (in the expansion of the 
Reynolds stress). He further states that ‘the modes of motion considered by 
Malkus are motions obtaining energy directly from the mean flow and losing it 
by non-linear transfer. . . ’. These rephrasings suggest an expansion in terms of 
unstable eigenfunctions of the linear problem. In subsequent commentary 
Spiegel(l962) appeared to have the same view. He presumed that at each value 
of a and R a number of eigenvalues and their associated normal-mode eigen- 
functions exist as solutions to the Orr-Sommerfeld problem. Spiegel conjectured 
that each of these normal modes has a neutral stability curve somewhere in the 
(a, R)-plane, as shown in figure 3. The dashed line indicates Spiegel’s interpreta- 
tion of the flow Reynolds number. Since higher mode neutral stability curves 
had not been calculated for any shear flow, Spiegel suggested their position and 
shape from the analogous neutral stability modes of thermal convection. He then 
suggested that the last member in the finite series should be determined from the 
n = n* mode. Landahl(l965) stated that Malkus ‘hypothesized that the velocity 
fluctuations must be selected within that class of marginally stable fluctua- 
tions. . . ’, which again suggests a representation of the turbulence in terms of the 
neutrally stable eigenmodes. Lumley (1966) appears to have held a similar view. 
There is no evidence that a family of neutral stability curves exists for shear 
flows. In fact all numerical calculations for laminar Poiseuille flow indicate that 
there is only one unstable mode and hence only one neutral curve (Howard 1964; 
Lee & Reynolds 1964). These interpretations appear to be inconsistent with 
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Malkus’s stated objective ‘to find the momentum transport spectrum and mean 
velocity profile which lead to a marginally stable mean field of maximum 
dissipation rate ’. 

There are other difficulties with Malkus’s theory. Spiegel pointed out that 
there is no assurance that the proposed optimum state is allowed by the equa- 
tions of motion. Moreover, it is not apparent that the extremum problem Malkus 
actually solved can be properly inverted to the initial variational postulate of 
maximum dissipation rate a t  a fixed Reynolds number. There is also no thermo- 
dynamic reason for expecting the dissipation to be a maximum under these, or 
any other, constraints.? 

The objective of the present study was to evaluate all of these ideas. The 
method of attack centred on a direct calculation of dissipation and the determina- 
tion of the neutral stability curves for a family of turbulent plane Poiseuille pro- 
files. The family of profiles was calculated from the mean equations of motion 
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FIGURE 3. Spiegel’s interpretation of Malkus’s theory. 

after the Reynolds stresses were determined from an assumed expression for 
eddy viscosity. This expression, and hence the mean profile, contains two free 
parameters. The dissipation rate and the neutral stability curves were determined 
as €unctions of these two parameters for a fixed flow Reynolds number, and in 
particular for marginally stable members of the two parameter family. Based on 
these calculations, we can draw some conclusions relative to the important 
aspects of Malkus’s theory, and these are given in $4. 

2. Characteristics of the mean velocity field 
The equations relating the mean velocity profile to the turbulent Reynolds 

stress are obtained by representing the velocity field by the sum of a mean and 
a fluctuation, and averaging. When suitably normalized, they become (see 
figure 4) 

( 2 . l a )  

( 2 . l b )  

t See the discussion by one of us on the paper by Sparrow & Siege1 (1959). 
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Here the channel half width, S, is used as the characteristic length, and the 
continuity-average velocity, Urn, is used to normalize both the fluctuating veloci- 
ties u and v and the mean field U .  Urn is defined by the condition that 

s 

The mean pressure P is normalized on pU2, and the Reynolds number is 

R = Umc9/v, 

where v is the kinematic viscosity. If a scalar eddy viscosity is used instead of the 
Reynolds stress, (2 . la)  becomes 

- - y = l  

- *  

aP 1 d _ -  ax - R&+E)%]. ( 2 . 1 4  

Here E is the (kinematic) eddy viscosity, normalized on v, and defined by com- 
parison of ( 2 . 1 ~ )  and ( 2 . 1 ~ ) .  

Equation (2.1 b )  indicates that the streamwise pressure gradient is uniform 
across the flow, and hence may be replaced by the wall pressure gradient, 
dP,/dx = - B. Then, ( 2 . 1 ~ )  may be integrated twice, employing the conditions 
that U(0) = 0, and U'( 1)  = 0,t and the mean velocity field is obtained as 

U(y) = R B I U  l -y l  dy,. 
0 1 + E(Y1) 

The value of the streamwise pressure gradient is fixed by (2.2). Thus, given the 
eddy viscosity distribution, the mean velocity profile can be evaluated using 
appropriate numerical techniques. 

The mean dissipation rate per unit of length may be determined by consider- 
ing the control volume of figure 5. If one assumes that the fluid is incompressible 
[and hence the internal energy and entropy are functions of temperature only 
(Reynolds 1965)], and that conduction mechanisms maintain an isothermal flow, 
then application of the second law of thermodynamics gives the rate of entropy 
production per unit of length as 

P, = p/T. (2.4) 

17 

t Primes denote differentiation. 
Fluid Mech. 27 
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Here q is the rate at which energy is transferred as heat from the control volume 
(per unit length), and T is the fluid temperature. Note that the convective 
entropy fluxes cancel for steady, fully developed isothermal flow. An energy 
balance on the control volume, incorporating these idealizations, yields (un- 
normalized) 

+I 2 n 
FIGURE 5. Control volume. 

Using (2.4), the (normalized) rate of entropy production is 

9 = TP,/@U$) = 2B.  (2.6) 

This is consistent with the dissipation expression used by Malkus. 
It is important to appreciate that the laws of thermodynamics state that the 

entropy of an isolated system must increase, but say nothing about the rate of 
entropy production. In  fact, it  is known that a principle of minimum (or maxi- 
mum) dissipation rate does not in general hold (Gage et al. 1966), and con- 
sequently Malkus’s use of such a principle was purely speculative. 

The expression for eddy viscosity which we used was first suggested by Cess 
(1958) for pipe flow. It has the advantage of being continuous and analytic, and 
this allowed complex continuation in our asymptotic treatment of the stability 
problem. The expression is a combination of van Driest’s wall region law and 
Reichardt’s middle law, and, as adapted for the channel, is 

(2.7) 

The constant K is the von K k m h  constant of the logarithmic velocity profile, 
and A+ is a constant in van Driest’s wall law, characterizing the thickness of the 
wall region in the shear velocity normalized ( y + )  co-ordinate. A+ and K are the 
two parameters used to characterize the profiles throughout this study. 

The nominal values of K and A+ which fit experiments in pipe flow are 0.4 and 
26, respectively. Values of 0.4 and 31 give a somewhat better fit to the channel 
flow data of Laufer (1951). The mean profile for these latter values is plotted in 
the usual shear-velocity normalized co-ordinates in figure 6. Profiles for other 
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FIGURE 8. Eddy viscosity on the real axis. 

FIGURE 9. Dissipation for some members of the admissible family. 
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values of the parameters are shown in figure 7 for comparison. The eddy viscosity 
for a typical case is shown in figure 8. 

The dissipation rate 9 was calculated for a number of combinations of the 
parameters, and the results are shown in figure 9. Note that no apparent minimum 
or maximum appears, and it is consequently clear that a hypothesis of minimum 
or maximum dissipation without constraints would be invalid. 

Malkus actually solved an inverted extremum problem; fixing the product of 
the friction factor and Reynolds number, i.e. RB, he sought the flow of minimum 
Reynolds number. He implied that this was equivalent to minimizing the flow 
at fixed dissipation, but this would not appear to be the case. The values of 
Reynolds number corresponding to fixed values of RB were calculated, and again 
no unconstrained extremum was evident. 

It is clear from these simple calculations that the constraints of Malkus's 
theory are essential. The Orr-Sommerfeld problem for the turbulent velocity 
profile plays a key role in constraints, and Malkus used a very simplified stability 
treatment. Since the eigenvalues of the Orr-Sommerfeld equation are very sensi- 
tive to the shape of the profile, we felt it would be highly desirable to carry out a 
more exact stability analysis, and this work is described in the next section. 

3. Solution of the Orr-Sommerfeld problem 
Investigations of the stability of parallel flows involve the Orr-Sommerfeld 

equation, which results from introducing specific forms of the small amplitude 
velocity and pressure perturbations into the Navier-Stokes equations. If the 
same procedure is followed in turbulent flow, additional terms are obtained; 
these reflect the interaction of the infinitesimal perturbation wave with the back- 
ground turbulence of finite fluctuation. Malkus took the view that the inter- 
action between the finite fluctuations and the perturbation would tend to stabilize 
the perturbation, and hence from the point of view of wanting to reject unstable 
turbulent profiles it would be conservative to neglect this complex interaction. 
Consequently he worked with the same Orr-Sommerfeld equation as emerges in 
analysis of laminar instability, but imagined using mean velocity profiles appro- 
priate for turbulent flow. 

It is known that the stability of parallel viscous flows to oblique wave disturb- 
ances can be studied by considering only waves which travel in the streamwise 
direction. Since the lowest Reynolds number a t  which an instability will occur 
corresponds to a wave aligned with the flow direction (cf. Lin 1955), it  is enough 
to study such disturbances. 

Introducing a streamwise wave having a streamfunction of the form 

$@, Y, t )  = $(?I) exp [ia@ - ct)l (3.1) 

into the equations of motion, and neglecting (as did Malkus) any interaction 
between the infinitesimal wave and the background turbulence, one obtains the 
(normalized) Orr-Sommerfeld equation for the wave amplitude distribution, 

qYV - 2a2#" + a4# = iaR[( U - C )  (#" - E'$) - U$]. (3.2a) 
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The boundary conditions a t  the walls give 
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$ ( O )  = $ ' (O)  = $(a)  = $'(a) = 0.  ( 3 . 2 b )  

Here primes denote differentiation, U(y) is the parallel basic flow under study, 
a is the wave-number, and c = c,+ic, is the eigenvalue associated with the 
eigenfunction $(y). The wave speed is c,, and ci determines whether the wave 
amplitude will grow (ci > 0) or decay (cc < 0) in time. The curve in the (a,  R)- 
plane along which ci = 0 is called the neutral (marginal) stability curve, and it 
separates regions of stable and unstable response to the wave disturbance. 

The velocity profile must be specified before the Orr-Sommerfeld problem 
can be solved, and in the present case we wish to do this for profile shapes appro- 
priate to turbulent channel flow. These shapes are actually dependent upon the 
flow Reynolds number, Rflow; we will use the normalized profiles calculated as 
described previously for a particular R,,, in the Orr-Sommerfeld solutions, 
allowing R to vary in the Orr-Sommerfeld problem. The solutions of interest 
will then be points where R = Rdow. 

The velocity profiles for channel flow are all symmetric about the centreline, 
and the operators in the Orr-Sommerfeld equation are all even; consequently 
the eigenfunctions will either be symmetric or antisymmetric, and this fact can 
be used to reduce the range of solution to 0 < y < 1.  The boundary conditions 
then become 

$ ( O )  = $ ' (O)  = $'( 1)  = $"( 1) = 0 for symmetric eigenfunctions (3 .3 )  

( 3 . 4 )  

The general solution may be written as the sum of four linearly independent 
solutions of ( 3 . 2 4 ,  

(3 .5 )  

Imposition of the boundary conditions leads to a set of four simultaneous homo- 
geneous linear equations for the constants C, . . . C,, which can only possess non- 
trivial solutions if the determinant of the matrix vanishes. This requirement 
produces the condition from which the eigenvalues c are determined. Denoting 
gj1 = $j(0) and $j2 = q5i( l) ,  the secular equation is, for symmetriceigenfunctions, 

and 
$ ( O )  = $' (O)  = $(1) = $"(1) = 0 forantisymmetriceigenfunctions. 

$ = cl $1 + c2$2 + c3$3 + c4$4* 

i $11 $21 $31 $41 

and, for antisymmetric eigenfunctions, 

1 $11 $21 $31 $41 

= 0. (3 .7 )  
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Four linearly independent solutions of the Orr-Sommerfeld equation are 
needed next. Since R is expected to be large, asymptotic methods have been 
found effective. Following Lin (1955), we seek solutions in the form? 

$(y) = q5(’)(y) + (l/aR) $(‘)(y) + . . . . (3.8) 

Substituting, and considering the terms of lowest order, one finds 

[ ( U - c ) ( P - a 2 ) -  U N ] q 5 ( O )  = 0, (3.9) 

where D = d/dy. This term contains no information from the fourth-order 
viscous terms, and hence is called the ‘inviscid’ Orr-Sommerfeld equation. 
Since it is of second order, only two independent solutions can be obtained via 
the expansion (3.8). If a is not too large, these may be developed as power series 
in a2; this is satisfactory for laminar plane Poiseuille flow (Lin 1955), but the 
values of interest in the present problem are sufficiently large that other methods 
must be used.$ The two independent solutions q51 and q52 thereby obtained are 
called the ‘inviscid’ solutions, because they are, to first order, solutions of the 
inviscid equation. The higher-order approximations to q51 and q52 are not usually 
employed in the large Reynolds number range of common interest. 

The solution of the inviscid equation must be carried out along an appropri- 
ately chosen path in the complex y-plane. The choice of path is dictated by the 
desire to render these two solutions valid asymptotic expansions of two solutions 
of the full Orr-Sommerfeld equation. Lin (1955) has shown that the proper 
choice is a path which lies below the point U = c for 0 6 y 6 1, the range of the 
present integrations. Hence, since for neutral stability we are interested in real 
c ,  it  will be necessary to go off the real axis, circumventing the points where 
U = c in the lower half-plane; this will require an analytic continuation of the 
velocity profile, which in turn requires a continuable expression for the eddy 
viscosity. It was with this in mind that the Cess expression was chosen. 

Two additional solutions are needed, and these must incorporate information 
from the viscous terms. This requires a ‘stretching’ of the independent variable 
prior to the expansion in powers of a small parameter. The stretching which 
retains the necessary information is (Lin 1955) 

r = (Y - Y,) (aR)4-7 (3.10) 

where U(yJ = c .  Then q5 is expanded such that 

9(r) = x‘O’(r) + or(4-41 (3.11) 

and U is expanded about yc. With this stretching expansion, the first-order 

D4x‘O) - i u ~ ~ ~ 2 x ( O )  = 0. (3.12) 
problem yields 

Of the four linearly independent solutions of (3.12), two can be formally 
t Recent numerical solutions of the full Orr-Sommerfeld equation (by W. C. R.) support 

the validity of using the asymptotic solution method for turbulent profiles. 
$ In  an earlier report (Tiederman & Reynolds 1965) we used the series solution method, 

which yields results in accord with the present calculations a t  sufficiently small a. The 
present calculations, valid over the entire range of a, supersede those of the report. 
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identified with the two ‘inviscid’ solutions $1 and q5z; the other two solutions, $3 

and q54 (the ‘viscous’ solutions), are, to first order (Lin 1955) 

Here H r )  is the Hankel function of the first kind, of order 4, and H!) is the cor- 
respondingfunction of the second kind. The viscous solutions, in this approxima- 
tion, are valid close to yc, where the stretched variable 71 is around unity. Normally 
the wall is in the region where 7 is relatively small, and hence these solutions 
provide adequate approximations at the wall. However, at the channel centre- 
line the solutions are not sufficiently accurate; one can go to higher order, or 
alternatively develop the viscous solutions in a different manner. Lin (1955) 
shows how the W.K.B. method can be used to obtain asymptotic expansions of 
the viscous solutions valid away from the critical point, and how these W.K.B. 
solutions connect with the critical layer solutions. The asymptotic ‘outer’ 
expansions of the viscous solutions corresponding to $3 and q54 are found to be 

(3.14) 

Lin further establishes that the appropriate branch of the square root which 
match these solutions to the ‘inner’ solutions is the one which renders the real 
part of the root positive. Hence $3 will decay rapidly as y increases towards the 
centreline, while 44 will grow. 

For large R the main contribution to $ a t  the centre comes from $1, cj2 and $4. 

Since 4z2 > 4i2, the main effect of $4 will be to allow 4’’’ to vanish at the centre 
(for symmetric eigenfunctions), and the centreline conditions are approximately 

c14;2+(72$;2 = 0, (3.15 a) 

(3.15 b )  

Hence the relative amounts of 41 and 4, in the solution are essentially controlled 
by (3.15a). At the wall 44 is very small, but $3 contributes, and hence the wall 
boundary conditions are approximately 

‘1 $11 + ‘2421+ c3431 = O ,  ( 3 . 1 5 ~ )  

c14;1+cZ4~1+c34~l = O .  (3.15d) 

Since the relative amounts of $1 and $2 in the complete solution are determined 
by the lower-order centreline boundary condition (3.15a)) it  is convenient to 
construct a linear combination of $1 and g2 which satisfies this condition and then 
to use this modified inviscid solution in conjunction with the two viscous solu- 
tions $3 and $4. The higher-order centreline condition (3.15b) establishes the 
amount of $4 required, and then the wall conditions (3.15c,d) provide the 
characteristic equation. Thus, we define a modified inviscid solution by (for 
symmetric eigenfunctions) 

(3.16) 

and the approximate characteristic equation becomes 

c1 4y2 + C2$t2 + C4$tz = 0. 

4i = 41 - ($L/$;2) $2 

431/$k = $id$h* (3.17) 
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Similar arguments for antisymmetric eigenfunctions, incorporating a modified 
inviscid solution which vanishes at the centreline, again give (3.17) as the 
characteristic equation. 

The viscous term $31/&l is taken from the asymptotic solution (3.13) as (Lin 

(3.18) 

/iz/: 52:Hp"+(Wl e - 2  dC1 

- z / - E  00 &q?[$(iCl)W1 - 
F(z )  = ~ (3.19) 

The characteristic equation can be put into a form more convenient for solu- 

P(z) = G(a,c), (3.20) 

where &/& = - ycG(a, c). Further ease a t  solution is obtained if we introduce 
the definitions 

P ( z )  = l / [ l -F(z)]  and Y(a,c) = l /[ l-G(a,c)],  

tion by dividing (3.17) by yc,  which gives 

and then rewrite the characteristic equation as 
9 ( z )  = 9(a,c). (3.21) 

Note that both F and %-are independent of the velocity profile shape. Miles 
(1960) calculated and tabulated Y ( z )  for real z over the range of interest; this 
suffices for determination of the neutral stability curve. The inviscid function 
%(a, c )  must be calculated for a specific profile shape and then the characteristic 
equation can be solved by some suitable means. 

After some considerable exploration of various possibilities, we ultimately 
decided to determine the inviscid solution by direct numerical integration. The 
path along which the solution was obtained is shown in figure 10. The circular 
arc was subdivided into eight parts, and 40 steps were used in each part. The 
steps of adjacent parts differed by factors of two, with the finest mesh located a t  
the wall. The solution was started at  the centreline, with the appropriate central 
conditions, and carried to the wall, where 9(a,c) was then calculated. A four- 
point integration scheme was used; @' at three backward points and the un- 
known forward point was used to find a third-order polynomial, which was 
then integrated to get an expression for # at the forward point in terms of 4'' a t  
this point. The differential equation was then used to find $" at the forward 
point. For large a the solution goes locally like exp ( - Qay), where Q is a constant 
related to the velocity field, and hence it was desirable to begin the calculation 
at  some point midway across the channel. An extensive series of numerical 
experiments substantiated the validity of the various numerical schemes em- 
ployed, and showed that the resulting values of 9 were accurate to at least four 
places. The calculations were programmed in FORTRAN IV, which provides for 
automatic complex arithmetic, and executed on an IBM 7090. 

The solution of the inviscid equation in the complex plane requires an analytic 
continuation of the velocity profile, which in turn requires analytic continuation 
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of E(y) .  Provided that we stay sufficiently close to the real axis, (2.7) can be so 
continued, and hence the corresponding complex velocity profile can be com- 
puted from (2.3). In  figure 11 we show the complex eddy viscosity for a typical 
case, and in figure 12 the corresponding complex velocity profile is shown. 

FIGURE 10. Path of integration for the inviscid solution. 

Yr 
FIGURE 11. Eddy viscosity on the complex path. 

Because 9(a,  c )  can be rapidly calculated, we find the eigenvalues for neutral 
stability using an Argand diagram (figure 13). The real and imaginary parts of 
F ( z )  are plotted from Miles's (1960) tabulation, and give the loop-like curve of 
figure 13. By solving the inviscid equation for a sequence of values of a at fixed 
c, and plotting the real and imaginary parts of 9 ( a ,  c) on the same graph, a line 
is obtained which, for sufficiently small c, intersects the P curve a t  two points, 
which therefore represent solutions to the characteristic equation (3.21). The 
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values of a and x a t  these intersections, together with c, determine R, with the 
dual intersections giving points on the two branches of the neutral stability 
curve. Two typical graphical solutions are shown in figure 13. The laminar solu- 
tion, obtained using the present numerical programme, is in agreement with the 
results obtained earlier by Lin (1955). Note the large values of a which are of 
interest in the turbulent case. I n  an earlier attempt to study this problem 
(Tiederman & Reynolds 1965) we computed the inviscid solution as a series in 
a2, using numerical integration of the integrals given by Lin. The values of 9 
deduced subsequently from these earlier calculations are in excellent agreement 
with those of the present calculation for a < 2 ,  and the points on the neutral 
stability curves for a < 1 found previously are again substantiated.? This check 
with the earlier, independent calculation, provides considerable confidence for 
the present calculations. 

Observing that the Argand-diagram lines of constant c from the inviscid 
calculations are very nearly straight lines, an approximate scheme for calculating 
the critical Reynolds number is suggested. The two points of intersection on the 
Argand diagram will meet approximately at x = 3.2, and hence the character- 
istic equation at  the critical Reynolds number is approximately 

%(a, C) = 1.497 + 0*581i, 

(aRcrit. ugp yc = 3.2. 

(3.32a) 

(3.223) 

We used this as a basis for approximate calculation of Rcrit., and found it to be 
in good agreement with the graphical results. 

The results of the stability study for turbulent profiles will now be described. 

4. Results and discussion 
Calculations for symmetric eigenfunctions for profiles closely resembling the 

experimental turbulent profiles of Laufer (1951) were carried out at a flow 
Reynolds number of 25,000. Two typical neutral stability curves for such pro- 
files are shown in figure 14. Note that the critical Reynolds number for these 
profiles is a factor of 10 greater than the flow Reynolds number; the experimental 
profile is not, as Malkus supposed, marginally stab1e.f 

There is, however, a subset of profiles from our two-parameter family which 
are marginally stable, and some are shown in figure 15. Note that the values of 
A+ and K corresponding to these profiles differ substantially from the ‘experi- 
mental’ values, as do the profiles themselves. The value of A+ which, for a given 
K ,  yields a marginally stable profile is shown in figure 16. Note that, for large K 
and A+, a limiting behaviour of A+/K = const. is obtained. The dissipation rate 
for these marginally stable profiles is also shown in figure 16. Note that it ap- 

t In  the previous work we used Lin’s (1955) iteration method, rather than the Argand 
diagram, to solve the characteristic equation, and obtained neutral stability curves con- 
siderably different from those we report here. The failing of the earlier calculation was due 
to a very high sensitivity of the iterative scheme to the initialization. The earlier results 
should be disregarded for a > 1. 

3 At the large values of a involved near the critical point, symmetric and antisymmetric 
eigenfunctions give indist,inguishable eigenvalues. 
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1, K = 0-4, A+ = 31; 2, K = 0.4, A+ = 26. 
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FIGURE 15. Neutrally stable members of the admissible family. 

3, K = 0.05, A+ = 78; 4, K = 0.10, A+ = 137; 6, K + 03, Af-tll30K. 
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proaches a maximum for the limiting velocity profile, but is everywhere signi- 
ficantly below the experimental value. Neutral stability curves for some of these 
marginally stable profiles are shown in figure 17. 

These calculations strongly indicate that the conjectures that the turbulent 
velocity profile has unstable or marginally stable eigenvalues were incorrect. 
Careful examination of the actual content of Malkus's manipulations yields the 
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FIGURE 16. Parameters yielding neutrally stable profiles. 

explanation for the success of his calculations. Malkus used an approximate 
characteristic equation for the critical Reynolds number essentially identical 
with (3 .22b) .  The smallest scale A, is tied to the rapid fluctuation of the eigen- 
function in the region very close to the wall, and an estimate of c is essentially 
provided by c M U:, A,. Hence, the determination of Rcrit. for a specific smallest 
scale is essentially reduced to an estimation of a. In his calculations Malkus used 
an estimate of a above which the flow is stable; this estimate was obtained from 
consideration of positive definite integrals, and is hence conservative. His esti- 
mate was 

where M is a positive lower bound in excess of 8. Applying this to our experi- 
8a4M > [UL RI2 for stability, 
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mental profile for K = 0.4, A+ = 31, U; w UL = 51-5, we find a > 2.5 Ri. At 
R = 25,000 the sufficiency criteria says that the flow will be stable if a > 395 
(indeed, our neutral stability curve lies below this point). Malkus used this as the 
estimate for a at the critical point. Upon comparison with the curves of figure 14, 
we see that it is high by a factor of about 10, and hence his estimate of the critical 
Reynolds number would be low by about a factor of 10. Thus, in his calculations 
the profile would indeed appear to be marginally stable, while a more accurate 
stability calculation indicates it is not. It consequently seems that it was for- 
tuitous that Malkus’s calculations met with such apparent success. 

0.26 

Finally, let us consider the role which the Reynolds stresses would play in the 
stability problem were they included. The present calculations indicate that the 
critical point ye lies within the ‘sublayer’ for the calculations at hand (at y+ w 5 
in all cases), where the eddy viscosity is negligible in comparison with the mole- 
cular viscosity. Hence the effect of the eddy viscosity on the viscous solutions 
would have been very small, had it been included. Moreover, consideration of the 
asymptotic development of the viscous solutions with an eddy viscosity acting 
indicates that, to first order, q& and g54 would be as given above, except that the 
Reynolds number would be based on the total viscosity (Tiederman & Reynolds 
1965). Hence the neutral stability curve of figure 14 would apply to such a modi- 
fied Reynolds number, and the neutral curve for R based on the molecular 
viscosity would be displaced to the right. Thus we conclude that the Reynolds 
stresses would indeed act to further stabilize the mean profile. 
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